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ABSTRACT 

This case study explored Grade 12 learners’ misconceptions in 

limits of functions. The study aimed at understanding problems 

that learners face in learning the concepts of limit by analyzing 

misconceptions that learners have and identifying the possible 

sources of these misconceptions to take remedial action. An 

exploratory research design was adopted, and purposive 

sampling employed to select 35 Grade 12 learners (21 females 

and 14 males) who wrote a test on limits. From the 35 learners 

who wrote the test, five learners were interviewed guided by 

their written responses. Theoretically, the study was guided by 

the constructivism theory and used a systematic error 

conceptual framework to categories the learners` 

misconceptions according to extrinsic and intrinsic calculus 

misconceptions. The study sought to answer the questions: (a) 

What type of misconceptions do Grade 12 learners exhibit in 

responding to limit questions? (b) What are the possible sources 

of these misconceptions? The study found that Learners 

exhibited misconceptions on the limit concept and related 

symbolism. Learners who had a flawed understanding of 

algebraic concepts struggled to apply limits correctly. The weak 

foundation on algebraic skills impacted negatively on their 

learning of new concepts on limits. The study recommends that, 

educators should always check and make sure that learners have 

appropriate prior knowledge before the teaching of new 

concepts in calculus.  It is recommended that that teaching and 

learning approaches need to be adjusted to give equal weight to 

both the procedural and the conceptual understanding of 

mathematical knowledge in learners.   

KEYWORDS 

Differential calculus; extrinsic concepts; Grade 12; intrinsic 

concepts; misconceptions.   
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INTRODUCTION 

Mathematics is one subject that occupies a strategic place in the South African secondary 

school curriculum, and one of the key topics taught at Grade 12 level is calculus.  Several 

studies established that learners had challenges in understanding calculus where their 

performance was poor and there was a tendency to emphasize procedures at the expense of 

conceptual understanding in the mathematics classroom (Amit & Vinner, 1990; Dlamini et al., 

2017; Luneta & Makonye, 2010).  The focus on procedural knowledge tends to create learners 

who do not value the conceptual part of calculus and elect to focus only on the computational 

aspects, thus making the teaching of calculus lose its essence (Jones et al., 2017; Thompson, 

1992). Thompson (1992) argues that learners’ errors and misconceptions in calculus may 

result from educators who focus on teaching mathematical rules, algorithms, and procedures 

at the expense of developing a conceptual understanding of calculus concepts.  The diagnostic 

reports published by the Department of Basic Education show that learners continue to have 

problems in the following areas in calculus: The evaluation of limits, algebraic manipulations; 

graphical application of calculus; and the use of calculus in optimization (DBE, 2015; 2018). 

Objectives and research questions: 

The study was guided by the following objective:  

• To identify some of the systematic errors that Grade 12 learners exhibit in responding 

to limits questions. 

• To establish some of the possible sources of these misconceptions. 

• Emanating for the research objectives, the study sought to answer the following 

research questions.  

• What type of misconceptions do Grade 12 learners exhibit in responding to limits 

questions?  

• What are the possible sources of these misconceptions? 

LITERATURE REVIEW 

Mathematical learning and mathematical knowledge  

Researchers have put forward different viewpoints on what constitutes mathematics learning 

and how best the subject should be taught. According to Skemp (1976), there are two levels of 

understanding mathematics, termed relational and instrumental understanding of 

mathematics. Those who ascribe to the relational understanding of mathematics believe that 

the correct way of learning mathematics is to know both what to do and why. Relational 

understanding is about knowing the different mathematical concepts as well as knowing how 

they are connected. Those who ascribe to the instrumental understanding of mathematics 

maintain that learning mathematics should essentially be about learning the mathematical 

rules and how they are applied in computations. Little effort is made in justifying why the 

mathematical rules work in the different computations or areas of application. Concerning 

calculus, when one has an instrumental understanding of the concepts, then they cannot 
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justify why calculus techniques work in those areas where they are applied (Jones et al., 2017). 

There is a possibility that the learner errors and misconceptions in calculus occur because 

these learners have only mastered an instrumental understanding of calculus concepts but 

could be struggling with relating these various concepts to each other. 

Hiebert and Lefevre (1986) propose two forms of mathematical knowledge that a 

learner can have, which they referred to as procedural and conceptual knowledge. They argue 

that when a learner has conceptual mathematical knowledge, they can generalize and connect 

the different concepts.  However, when one only has procedural knowledge, they only know 

how to carry out a mathematical task but are unable to explain why. They argue that teaching 

which emphasizes drill and practice leads to procedural knowledge since the emphasis is on 

speed and efficiency (Baroody, 2003; Hallett et al., 2010). In solving limits problems, some of 

the errors and misconceptions reflect the learners' failure to build procedures based on 

conceptual knowledge. Research by Machaba (2018), established the existence of a bias in 

South African teachers towards focusing on mastery of procedures and formulae at the 

expense of a conceptual understanding of mathematical concepts. It may be that due to this 

kind of teaching, where the emphasis is placed on following rules and procedures, learners 

end up with a limited understanding of the concepts being taught; hence errors and 

misconceptions are reflected in their solutions of limits questions. 

While there is a consensus that learners need both procedural and conceptual 

knowledge, there are different views on which knowledge should come first during 

mathematics teaching. Orton (1983) and Vinner (1989) attributed the problems of calculus 

teaching to the emphasis on the teaching of calculus procedures while conceptual knowledge 

is neglected or not getting equal attention. 

Another area that impacts learner errors and misconceptions are the teaching 

strategies adopted by some mathematics educators. Shulman (1986) and Usiskin (2003) argue 

that some of the errors and misconceptions in mathematical concepts result from the teaching 

that learners receive. According to Usiskin (2003, p. 86), good mathematics teachers should 

know a great deal of what he calls “teachers’” mathematics. Shulman (1986) similarly refer to 

this mathematics content for the teacher, which in essence refers to having an in-depth 

knowledge of the mathematical concepts coupled with the requisite pedagogical knowledge. A 

clear distinction is made between content knowledge and pedagogical knowledge, where the 

former refers to just being competent in handling mathematics concepts, procedures, and 

problem-solving strategies. The latter refers to the possession of expertise on how to teach 

content in ways that make it easy for the learners to understand. It further comprises an 

understanding of what makes the learning of topics easy or difficult (Shulman 1986). 

Carpenter (1988) also expresses similar views that effective teachers consider the knowledge 

of related concepts and procedures that learners have already assimilated before they are 

taught new topics, the likely challenges about the topic they may have developed, and the 
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stages of understanding they are likely to pass through. This type of expertise in teaching 

methodology is critical for the effective teaching of limits. 

Differentiating Errors from Misconceptions on calculus learning  

Researchers generally agree on two main categories of errors: unsystematic and systematic 

errors. According to Khazanov (2008), unsystematic errors are simple once-off incorrect 

responses that learners can easily rectify on their own once they become aware of them. 

Examples of unsystematic errors are computational errors and errors due to carelessness. 

Computational errors result from incorrect addition, subtraction, multiplication, or division. A 

single mistake by a leaner in a problem that requires multiple steps has a ripple effect, 

eventually resulting in a wrong final solution. Careless errors occur mainly due to learner 

inattention or rushing through given work, resulting in incorrectly copying a problem or 

dropping a negative sign or entering the wrong number into their calculator (Veloo et al., 

2015). 

The focus of this research is on systematic errors. Systematic errors are consistently 

repeated over time whereby learners tend to give incorrect responses that are methodically 

constructed each time they are faced with a particular mathematical problem. According to 

Nesher (1987), systematic errors have two major characteristics, they are persistent and 

pervasive, and learners repeat the same mistakes throughout a variety of contexts. Systematic 

errors are indicative of flawed thought processes; hence they are regarded as misconceptions 

(Green et al., 2008; Nesher, 1987; Riccomini, 2005). When learners’ thought processes are 

flawed, they keep repeating the same mistakes because they appear to be making sense in 

their constructions. Because of the perceived sensibleness of the incorrect solutions, these 

misconceptions can be difficult to correct even when appropriate corrective instruction is 

implemented (Smith et al., 1993). Nesher (1987), also share similar views that learners’ 

misconceptions often persist and do not easily respond to remedial instruction where one has 

been designed. Because misconceptions can detract from knowledge acquisition, especially in 

mathematics; it becomes imperative for researchers to focus and try to understand the root 

causes of these persistent learner errors better so that educators may be able to assist the 

learners in acquiring the desired mathematical competencies. While it is easy to identify errors 

in the learners’ written work or in discussions with them, it requires more critical observation 

in the case of misconceptions that may be camouflaged by correct answers when these 

answers were obtained by accident (Smith, DiSessa & Roschelle, 1993). Therefore, it is 

imperative for teachers to be more observant to determine whether the correct answers that 

learners are giving are not accidental but are the product of correct mathematical reasoning. 

Borasi (1987) places systematic errors in several categories as follows:  

• According to Borasi (1987), conceptual errors arise when learners misunderstand the 

underlying concepts and use an inappropriate logic to solve a given mathematical problem. A 

major characteristic of conceptual learner errors is that the learner can make all the correct 

mathematical computations, but still end up with an incorrect final solution. For example 
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when a learner is required to determine the turning point of 𝑓(𝑥) = 𝑥3 − 𝑥2 − 5𝑥 − 3, he 

proceeds to find 𝑓/(𝑥) = 3𝑥2 − 2𝑥 − 5 and solves 3𝑥2 − 2𝑥 − 5 = 0 to get 𝑥 =
5

3
 or 𝑥 =  −1. 

For  

𝑥 =
5

3
 ,  𝑓/ ( 

5

3
 ) = 0 and the turning point is given as ( 

5

3
; 0) where (x; 𝑓/(𝑥)) is used in place of 

(x; f (x)) which is point (5/3; - 256/27). While the computation of 𝑓/ ( 
5

3
 ) = 0 is correct it is not 

addressing the question at hand due to conceptual errors about the value of a derivative at a 

given point and the coordinates of the point itself. 

• Generalization or transfer errors refer to the use of techniques or procedures learned in 

the past in solving new problems without realizing the limitations of those techniques or 

procedures. For example, while √𝑥𝑦 = √𝑥 . √𝑦, it would be incorrect to assume that    
𝑑

𝑑𝑥
 (x3+1) (x-2) =  

𝑑

𝑑𝑥
(x3+1).  

𝑑

𝑑𝑥
(x-2).  

• Ignorance of rule restrictions is like overgeneralization. Learners are unable to 

appreciate the restrictions of certain mathematical structures, and consequently apply a rule 

in contexts where it is inapplicable (Borasi, 1987). In the context of calculus, given f(x)=  
√𝑥− 4

√𝑥
 , 

this type of error arises when learners incorrectly switch from the square root sign (√ )  to 

exponents and write f(x) =  
(𝑥−4)

1
2⁄

𝑥
1

2⁄
  incorrectly applying square root sign (√ )  to (x-4). Hence 

the learner will have difficulties in finding 𝑓/(𝑥)  correctly in the new expression. 

• According to Borasi (1987), the incomplete application of rules arises in cases where 

learners fail to learn more complex types of structures opting for the use of relatively simple 

rules and hoping to succeed with effective communication.  In calculus when are learners are 

required to find the equation of tangent  to a given curve at a specific point, for example 

𝑓(𝑥) = 𝑥3 − 𝑥2 − 5𝑥 − 3 at x = 1, some learners find the correct gradient using  𝑓/(1), but 

then use (1; 𝑓/(1)) as the point of contact to find the equation of the tangent. Here learners 

fail to distinguish f(x) from. 𝑓/(𝑥) 

• Another error, cited by Borasi (1987), is learners forming the wrong hypothesis about 

concepts and proceeding to use these false hypotheses in the learning of new concepts. A 

typical example of this error is when learners are requested to find the x and y intercepts of 

𝑓(𝑥) = 𝑥3 − 𝑥2 − 5𝑥 − 3; some may write 𝑓(𝑥) = 𝑥3 − 𝑥2 − 5𝑥 − 3 = 3𝑥2 − 2𝑥 − 5 = 0. 

Here the learners confuse intercepts and use of derivatives to find turning points, and misuse 

= signs, thus mixing up different concepts as they proceed with their calculations. 

Categories of Misconceptions in calculus 

Over and above the misconceptions discussed by Borasi (1987), Nishimori (2005) chooses to 

view the misconceptions in terms of how they relate to calculus, using two broad categories 

intrinsic and calculus-intrinsic and extrinsic. Calculus-intrinsic concepts are concepts within 

calculus that are misunderstood, whereas extrinsic concepts are concepts that are preceding 

calculus and act as prior knowledge that must be learnt and understood before calculus 
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concepts could be understood. Judson and Nishimori (2005) argue that students’ difficulties in 

calculus can be traced to other learning difficulties they experience in dealing with related 

topics such as functions, graphs, inequalities, summation, and algebra. Their study observed 

that many students struggled with understanding function concepts, which in turn led to 

learner errors when they encountered problems involving applying limits of functions due to 

the interrelationship between functions and calculus. More research confirms that when 

students have a shallow understanding of the function concept, they experience many 

difficulties with calculus concepts once they fail to see the relationship between functions and 

calculus and approach them as isolated concepts. When the concepts are treated in isolation, 

the net effect is that students tend to adopt and retain incorrect mathematical constructs 

(Cooley et al., 2007; Orton, 1983; Selden, Selden & Mason, 1994). As a result, there could be 

over-generalization or transfer errors. Usiskin (2003) argues in favor of introducing students to 

such concepts as inequalities, summation, and algebra at an early stage. This background 

knowledge will provide the necessary foundation for students to learn calculus as these 

concepts are not isolated are interlinked. 

According to Morris (1999), another root cause of misconceptions is unsuccessful 

teaching strategies. He argues that one of the problems for students learning calculus is 

mathematics educators' tendency to emphasize equipping learners with procedural 

knowledge grounded in algebra. Consequently, the learners also have difficulties 

comprehending the importance of the conceptual part of calculus and hence neglect it and 

consider only the computational part, thereby losing the essence of learning calculus 

(Bezuidenhout, 2001; Davis & Vinner, 1986). Aspinwall and Miller (1997), in their studies also 

made the same observation that students regard mastery of the computational skills as the 

main objective of learning calculus and this approach creates students whose understanding 

of the calculus concept is shallow.  

Further research has found that in the process of solving calculus problems, students 

fail to utilize all the given information, opting to selectively utilize only part of the information 

which they consider relevant, thereby ignoring those other parts that would be indispensable 

in the successful resolution of the problem (Carlson et al., 2003).  

The present research focuses on the learning difficulties in limits of functions, learner 

errors and related misconceptions of mathematics learners in the Limpopo province, South 

Africa. For the effective analysis of the research findings, the errors will be coded according to 

the different categories explored above.  

Theoretical framework  

The constructivist theory of learning forms the foundation for this research. According to this 

theory, the learner is not treated as an empty tin which absorbs knowledge directly from life 

experiences or from teaching only in a passive way (Krahenbuhl, 2016). The learner actively 

participates in the construction of their own knowledge in a process where they construct new 

knowledge by utilizing what they already know and relating it to what is new so that new ideas 
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assume meanings concerning what is already known by the learner (Shuard, 19861; Wheatley, 

1991). Thus, in learning mathematics, learners actively participate in constructing their own 

mathematical knowledge, using their previous personal experiences as a reference point, 

developing their ways of thinking as they gain new experience, and using the new experiences 

to build on and expand their knowledge base.  

Table 1. 

 A Tabular representation of the various types of envisaged misconceptions and their sources 

Type of Systematic 

errors 

Category of 

misconception 

Sources 

• conceptual errors. 

• generalization or 

transfer errors. 

• ignorance of rule                                                                           

restrictions.  

• incomplete application 

of rules  

• wrong hypothesis 

used to learn new 

concepts. 

 

Category a 

Extrinsic calculus 

misconceptions 

Errors which arose due to knowledge 

deficiencies in the following extrinsic 

calculus concepts: 

• functions and related subfunctions 

such as domain and range. 

• representations of functions through 

graphs, rules, tables, and arrow 

diagrams. 

• geometry and measurement. 

• algebra.  

• inequalities.  

• summation,  

Category b 

Intrinsic calculus 

misconceptions 

• Errors which arose due to learners 

having difficulties with the following 

intrinsic calculus concepts: 

• limits – definition, related symbolism, 

and graphical representation;  

• functions – continuity and 

discontinuity of functions at given 

points, graphing of functions. 

• derivatives – definition and related 

symbolism, relationship between 1st 

and 2nd derivative, geometric meaning 

of 2nd derivative 
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According to constructivist theorist, in all instances, learners construct knowledge in 

their own different ways, regardless of the teaching methods employed (Krahenbuhl,2016). 

Even where direct teaching is employed, and students are told mathematical facts or ideas, 

they do not absorb the ideas exactly as they are taught, but they impose their own 

interpretation and attach meaning to these ideas through the lens of their own existing 

knowledge (Krahenbuhl,2016). The fact that the existing knowledge is unique for each learner 

implies that they are constructing their own knowledge (Cobb, Yackel &Wood, 1992).  

Systematic errors are believed to emanate from misconceptions, where learners have 

constructed incorrect conceptualizations of required mathematical knowledge but are 

unaware that although it makes sense to them, it conflicts with conventional mathematical 

knowledge (Nesher, 1987; Smith, DiSessa & Roschelle, 1993). According to Swan (2001), errors 

can be embraced as providing insights into the learners’ thought processes and engagement 

points. Borasi (1987) also concur that errors should constitute a normal part of both learners 

and educators' learning process. Because errors seem reasonable and make sense to the 

person making the error, they are essential in helping teachers engage with learners’ current 

knowledge. Through learners’ errors, teachers can appreciate that learners are reasonable 

thinkers (Ball & Bass, 2003). When teachers strive to understand the sources of learner errors 

and value learners’ thinking, they will be better positioned to utilize what learners already 

know in helping them construct new knowledge. 

The table below summarizes the envisaged misconceptions and their sources from the 

above literature review. While there were nonsystematic errors, the focus of this study was on 

misconceptions which are systematic errors. The table shows five types of systematic errors 

highlighted by Borasi (1987) and the two broad categories of extrinsic and intrinsic calculus 

concepts which might be underpinning the misconceptions (Judson & Nishimori, 2005). The 

study focused on these misconceptions and their sources as reflected in Table 1.  

METHODOLOGY 

This qualitative case study was located within the interpretivist paradigm and took naturalistic 

methodology.  A case study is defined as a “qualitative approach in which the investigator 

explores a bounded system (a case) over time through detailed, in-depth data collection 

involving multiple sources of information” (Creswell et al., 2007, p. 245). The study focused on 

a class of Grade 12 mathematics learners at one school in the Limpopo province. The Grade 12 

learners were purposely selected.  In purposive sampling, the researcher had the prerogative 

of deciding what needs to be known and identified the candidates who could and were willing 

to provide the required information by virtue of their knowledge or experience (Bernard, 

2002). A calculus test that focused on limits was administered to 35 grade 12 mathematics 

students (21 females and 14 males) who consented to participate in the study. The learners 

were selected because they were taught by one of the researchers and their syllabus 
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contained a section of limits.  From the 35 students, 5 students were interviewed guided by 

their written responses to the test.  

Table 2.  

Types of errors and categories of misconceptions 

Type of 

Systematic Errors 

Category of 

misconception 
Sources 

• conceptual 

errors; s1 

•  generalisation 

or transfer 

errors; s2 

•  ignorance of 

rule restrictions; 

s3  

• incomplete 

application of 

rules; s4 

• wrong 

hypothesis used   

to learn new 

concepts; s5. 

 

Category a 

Extrinsic calculus 

misconceptions; 

(ce) 

Errors which arose due to 

knowledge deficiencies in extrinsic 

Calculus concepts 

• functions and related 

subfunctions such as domain and 

range. 

• representations of functions 

through graphs, rules, tables, and 

arrow diagrams. 

• geometry and measurement, 

algebra, inequalities, summation  

Category b 

Intrinsic calculus 

misconceptions. 

(ci) 

Errors which arose due to learners 

having difficulties with intrinsic 

calculus concepts: 

• limits – definition, related 

symbolism, and graphical 

representation;  

• functions – continuity and 

discontinuity of functions at given 

points, graphing of functions. 

• derivatives – definition and 

related symbolism, relationship 

between 1st and 2nd derivative, 

geometric meaning of 2nd 

derivative. 

Adopted from Borasi (1987) and Judson and Nishimori (2005) 

The interview's primary objective was to allow the learners to explain their 

understanding of the questions and their interpretations and insights into the topic of limits of 
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functions. The responses to interviews provided additional information to the researcher to 

better understand what was in the learners’ minds and the likely sources of errors. An 

exploratory research design was adopted to observe learner errors and how these errors were 

interlinked to their misconceptions on limits of functions. Exploratory research helps 

researchers gain new insights, unearth new ideas, and create knowledge of the phenomenon 

(Burns & Grove; 2001).  

For trustworthiness of the interview questionnaires, two mathematics teachers and 

three mathematics education researchers reviewed the questions for clarity and specificity.  

The content validity of the test questions was assured by using the questions in the DBE CAPS 

document (DBE, 2012). Ethical considerations were made when gathering data. The results of 

this study are reported using only pseudonyms. Data were analyzed thematically, and all 

qualitative data were coded to examine common themes and patterns (Maxwell & Miller, 

2018). For the written test, the responses to each question were analyzed, and learners were 

grouped according to the type of errors that they made in each of the questions in the 

research instrument. Errors were coded according to the similarities of the errors and the 

whole range of other error categories identified in the literature review. For example, s1 was 

used for conceptual errors, s2 for generalization or transfer errors, up to s5 for the wrong 

hypothesis used to learn new concepts. The code ci was used for intrinsic calculus 

misconceptions, and the code ce was used for extrinsic calculus misconceptions. A table such 

as the one below was developed in the process of analyzing and categorizing the collected 

data.  

RESULTS and DISCUSSIONS 

The Calculus test was administered to a class of 35 Grade 12 learners at a secondary school in 

Limpopo province, South Africa. After marking, the performance of all 35 learners was 

summarized through tables. The sample answers from scripts were also presented for 

purposes of clarification of observed errors and misconceptions. In addition, five learners, L8, 

L9, L10, L11 and L12, were interviewed in relation to specific misconceptions displayed in their 

responses to specific questions. The interview responses were analyzed together with 

evidence from written scripts. The interview questions were intended to serve two purposes, 

firstly to enable the researcher to better understand the learner’s thinking processes and 

secondly to address and rectify the misconceptions. 

The data presentation and analysis attempted to provide answers to these questions 

that were set up at the beginning of the research project. 

(i)  What type of errors and misconceptions do Grade 12 learners exhibit in responding to 

differential calculus questions?  

(ii) What are the possible sources of these misconceptions? 
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Data presentation and analysis 

The following table is an itemized summary of learner performance in the written test (See 

Appendix), where written answers from learners are categorized as g= good for correct 

answers, f=fair for answers that are partially correct and w=weak for wrong answers.  

Table 3.  

 Item Analysis of learner responses to test questions    

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1ai g w w w w w w w w g w w f g w f w g 

1aii g w w w w w w w w g w w f g w f w g 

1bi g w w w w g g g g g w w w g w w w f 

1bii f w w w w f f f f f w f w w w f w f 

1ci w w w w w g g f f f g w g w w w w f 

1cii g w w g w w w g w f f g f g w w f w 

1ciii w w w w w w w w w w w w w f w w w w 

 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  

1ai w w w w w f w w f w f w w w w w w  

1aii w w w w w f w w g w f w w w w w w  

1bi g w w w w w w g w w w w w w w w f  

1bii f w w w w w w f w w w w w w w w w  

1ci w w w w w w g w g w w w w w w w w  

1cii w g w w w w w g w w f w w w w w w  

1ciii w f w w w w w w w w w w w w w w w  

 

g =good; f=fair; w=weak 

The focus of Question 1 was on assessing the learners’ knowledge of the limit concept 

and related symbolism, the existence or nonexistence of limit and the idea of a limit as a 

function. The learners’ knowledge of limits is important as it acts as prior knowledge for the 

study of calculus concepts, all of which are defined in terms of limits. Sub question 1(a), which 

required learners to explain in words the meaning of these statements (i) lim
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  =  - 3    

and (ii)  
𝑥2−4

𝑥−2
 → 4 as x→ 2 focuses on the learners’ understanding of limits and related 
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symbolism. The purpose of the test item is to check if the learners have the correct concept 

image for the limit concept. 

Table 4. 

Analysis of results per test item in terms of percentages 

Test 

item 

No. of 

correct 

answers 

% of 

correct 

answers  

No. of 

partially 

correct 

answers 

% of 

partially 

correct 

answers  

No. of 

correct 

answers 

% of 

incorrect 

answers  

1a    i 4 11 5 15 26 74 

1a    ii 5 14 4 12 26 74 

1b    i 9 26 2 5 24 69 

1b    ii 0 0 11 31 24 69 

1c    i 6 17 4 12 25 71 

1c    ii 7 20 5 14 23 66 

1c   iii 0 0 2 6 33 94 

This question exposed several learner misconceptions on the limit concept. Table 4 

shows that 74% of the learners could not explain the symbolism used in 1a (i)and (ii), 69% 

could not find the limits of the given functions in 1b (i) and (ii) and 94% could not use the 

graph to find limits using the graph in 1c(iii). 

Several learners in this group of twenty learners, (ci1) (20), interpreted  𝐥𝐢𝐦
𝒙 →𝟎

 to mean 

substitute x by 0 and by 2 in x→ 2. For example, L2 in this group assumed that 𝐥𝐢𝐦
𝒙 →𝒂

 meant that 

where they see x, it must be removed and substituted by a to get answer for limit. For these 

learners, lim
𝑥→2

𝒙𝟐−𝟒

𝒙−𝟐
 does not exist since 

22−4

2−2
  is undefined or division by zero is not allowed. 

Figure 1 

L2’s solution to question 1(a) & (b) 
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L2 concluded that firstly the statements i) lim
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  =  - 3 and (ii)  

𝑥2−4

𝑥−2
 → 4  as  x→ 2, 

were mathematically incorrect because in both cases one had to divide by zero, which is not 

allowed. This showed that the learner did not understand the concept of a limit. Secondly, L2 

concluded that f(1) and f(2) did not exist in 𝑙𝑖𝑚
𝑥→1

𝑥2−1

𝑥−1
 and lim

𝑥→2

𝑥+2

𝑥2−4
 respectively, and by 

implication he was saying that the limits cannot exist if the functions are not defined at the 

given points. This was a calculus intrinsic misconception since 𝑙𝑖𝑚
𝑥→1

𝑥2−1

𝑥−1
 = 

𝑙𝑖𝑚
𝑥→1

(𝑥−1)(𝑥+1)

𝑥−1
=lim

𝑥→1
𝑥 + 1 = 1 + 1 = 2, but f(1) is undefined. However, the limit can exist when 

the function is undefined at a particular point. Hence, L2 committed a conceptual error, s1, 

demonstrating a misunderstanding of the limit concept.   Another learner, L12 says when the 

limit gets closer to zero, the derivative is equal to negative.  

Figure 2. 

L12’s solution to question 1(a) & (b) 

  
The solution of L12 shows another conceptual error, s1, which arose from the learners 

having difficulties with the concepts of a limit and a derivative of a function. Referring to the 

limit of a function as the derivative was not correct since the derivatives of each of the given 

functions is different from their limit. It was therefore an intrinsic calculus misconception on 

the learner’s part to think that the limit of a function is synonymous with its derivative. Both 

the limit and derivative concepts are part of the content being learnt during the teaching and 

learning of calculus, hence the misconceptions displayed by learners here had their root 

source in these intrinsic calculus concepts, which learners were struggling to understand. 

Sub Question 1(b) on finding the limits where they exist of  (i) lim
𝑥→1

𝑥2−1

𝑥−1
   and (ii)  

lim
𝑥→2

𝑥+2

𝑥2−4
 was designed to check if learners could distinguish the value of a function at a 

given point from the limit of the function with reference to the given point and their ability to 

use related limit symbolism.  

One major challenge observed in the scripts of learners were flaws in their algebraic 

knowledge. The samples of learners L29 and L20 are representative of this group of five 

learners, (ce4.1) (5), who exhibited extrinsic calculus misconceptions by failing to find limits 

because they had problems with the concept of factorization. The factorization of algebraic 

expressions is done in lower grades and should form part of the prior knowledge for calculus, 

hence the learner misconceptions displayed here are resulting from a flawed understanding of 

extrinsic calculus concepts.  
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Figure 3. 

L29’s solution to question 1(b) 

 

Figure 4. 

L20’s solution to question 1(b)   

 

      
In Figure 3, L29, gave the incorrect factors (𝑥 − 1)(𝑥 − 1) as factors of 𝑥2 − 1 which 

appears to emanate from the learner’s failure to master the concept of factorising a difference 

of two squares,  𝑥2 − 1 = (𝑥 − 1)(𝑥 + 1)  . This was a conceptual error (s1). In Figure 4, L20, 

used 𝑥2 − 1 =   𝑥(𝑥 − 1), where there is an ignorance of rule restriction error (s3) as this 

learner failed to appreciate that 𝑥(𝑥 − 1) = 𝑥2 − 𝑥 when brackets are removed 

Another general observation for the group was that of learners making generalization 

or transfer errors by using inappropriate procedures learnt earlier to address the new concept 

of a limit. This group of nine learners, (ci2) (9), was constituted of learners who committed 

procedural errors of the form  lim
𝑥→1

𝑥2−1

𝑥−1
   = 

(𝑥+1)(𝑥−1)

𝑥−1
 = 𝑥 + 1 , as L12 did by omitting lim

𝑥 →1
 

during working or including lim
𝑥 →1

 where it was inappropriate, like writing 𝐥𝐢𝐦
𝒙 →𝟏

 x+1 = 𝐥𝐢𝐦
𝒙 →𝟏

 1 +

1 = 2. These learners did not appreciate the significance of  𝐥im
𝒙 →𝟏

 in lim
𝒙→𝟏

𝒙𝟐−𝟏

𝒙−𝟏
. 

Figure 5 clearly illustrative of the impact of a poor understanding of limits. Failure to utilize the 

appropriate symbolism in carrying out a procedure was indicative of a view held by learners 
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that this symbolism is unnecessary as it does not change the final answer. Learners in this 

group focused on the answer and lost sight of the significance of the mathematical precision 

required in using notation and symbolism of limits to ensure that what is written is 

conceptually correct.  

Figure 5. 

L12’s solution to question 1(b) 

 
    

Sub Question1(c) on sketching the graph of f(x) = 
1

𝑥−1
 and using the graph to find   

lim
𝑥→1

1

𝑥−1
     and  lim

𝑥→∞

1

𝑥−1
 was intended to check the learners’ knowledge of functions and graphs 

and their ability to relate this knowledge to the limit concept. In addressing the above 

question, this group of ten learners, (ce1) (10), displayed intrinsic calculus misconceptions by 

failing to sketch the correct graph due to deficiencies in the knowledge of functions 

concerning the range and domain of hyperbolic functions as well as their asymptotes.  

Figure 6. 

L29’s solution to question 1(c) 

 
In Figure 6 above, the learner, L29, correctly identified 𝑥 = 1 and y=0 as asymptotes of 

the graph but there was no consistency in applying the concept of an asymptote as one part of 

the graph is shown crossing y = 0, which had been given as an asymptote. The concepts of 

domain and range were not mastered by the learner in earlier grades. Hence, the knowledge 

gaps on extrinsic calculus concepts such as functions impacted negatively on the learner’s 

ability to use graphs to address questions on limits. 

On this same question, another group of fifteen learners, (ci3) (15), displayed intrinsic 

calculus misconceptions on limits and discontinuity of functions at given points. These learners 
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were able to sketch the correct graph of f(x) = 
1

𝑥−1
 but still could not use the correct graph to 

find limits due to knowledge gaps on continuity and discontinuity of functions at given points. 

Some learners in this group concluded f(x) is defined at x =1, since x= 1 is the asymptote of the 

graph, as L29 did above in Figure 6. For L29, the existence of the asymptote of the function 

implies f(1) exists. This is a conceptual error (s1), demonstrating a lack of understanding of the 

learner's concept of an asymptote. 

In the next section, we present scripts of the students who were selected of interviews, 

followed by interviews questions and responses. Five learners L8, L9, L10, L11 and L12, were 

requested to clarify their written solutions orally to check their level of understanding of the 

limit concept. 

Learner 8’s misconceptions on the limit concept 

Figure 7. 

L8’s solution to question 1 

 
 

Researcher: Can you explain more on the answers you gave on meaning of 

these statements 𝑙𝑖𝑚
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  =  - 3 and   

𝑥2−4

𝑥−2
 → 4 as x→ 2? 

L8:    limit means at the end so at the limit when x is goes to zero 

the function equals   -3 and f(x)=y so in the second when y 

goes to 4 when x goes to 2. 
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Researcher:  Please explain how you arrived at the answers that you got in 

1b(i) &(ii) 

L8: You substitute the value of x to get answer of limit. When I 

substitute x=1 in b (i)it is undefined, and limit does not exist. 

Even in b(ii) the limit does not exist because when x=2 we 

divide by zero and it is undefined.  

Researcher: In b(I,  explain this statement  𝑙𝑖𝑚
𝑥→1

𝑥2−1

𝑥−1
 = 𝑙𝑖𝑚

𝑥→1
(x-1). 

 
L8 : If you factorize  𝑥2 − 1 =(x-1)(x-1) so 𝑙𝑖𝑚

𝑥→1

𝑥2−1

𝑥−1
 =𝑙𝑖𝑚

𝑥→1
(x-1). 

Researcher: How many asymptotes does the graph f(x) = 
1

𝑥−1
 have? 

L8: It has two asymptotes x=1 and y=0 

Researcher:  What are the x and y- intercepts of f(x) = 
1

𝑥−1
 

L8: At y-int, x=0; we get y= -1 and at x-int, y=0, graph does not 

cross x-axis, y=0 is asymptote 

Researcher: Is f(x) defined at x =1? Explain     

L8: x=1 is asymptote of graph. graph cannot intersect x=1, we 

don’t y-value 

Researcher: How can you use your graph to find 𝑙𝑖𝑚
𝑥→1

1

𝑥−1
     and      

𝑙𝑖𝑚
𝑥→∞

1

𝑥−1
 

L8: 

 

It is not possible, x=1 is asymptote and ∞ is not a number 

which I can substitute to get limit 

From the responses, the learner L8 had the misconception that the limit of a function is 

the value of the function for a given value of x. For L8, finding the limit of a function was 

equivalent to finding the value of the function by merely substituting the given values of x. 

This is incorrect since  𝑙𝑖𝑚
𝑥→𝑎

 f(x) can exist when f(a) is undefined. 

The learner explained limit to mean the value of x at the end, yet 𝑙𝑖𝑚
𝑥→𝑎

 f(x) means “x is 

approaching and getting as close as is possible to a” and this does not mean x=a, hence 

𝑙𝑖𝑚
𝒙→𝒂

 f(x) should not be interpreted to mean f(a). This appeared to be a case of the learner 

choosing to rely on simple substitution strategies and simplification to address problems that 
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required conceptual knowledge of the limit concept, and he ended up making incorrect 

conclusions. 

The other misconception that 𝑙𝑖𝑚
𝑥→1

𝑥2−1

𝑥−1
 =𝑙𝑖𝑚

𝑥→1
(x-1), as argued by L8, is a result of poor a 

foundation on algebraic skills of factorization of a difference of two squares. This knowledge 

acts as the requisite prior knowledge for the learning and understanding the concept limit. If 

the learner had factorized correctly then his answer would have been 𝑙𝑖𝑚
𝑥→1

𝑥2−1

𝑥−1
 =𝑙𝑖𝑚

𝑥→1
(x+1) 

=1+1=2. This is evidence that this was an extrinsic calculus misconception on limits as it was 

caused by a flawed foundation in concepts that were learnt earlier. 

Learner 9’s misconceptions on the limit concept 

Figure 8. 

L9’s written response to question 1 

 

 
 

Researcher: You substituted x by zero (0) in 𝐥𝐢𝐦
𝒙 →𝟎

 
𝒙𝟐 −𝟑𝒙

𝒙
, why? 

L9 x is approaching zero and at the end it is zero and when x =0,  
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𝒙𝟐 −𝟑𝒙

𝒙
 = 

𝟎𝟐 −𝟑(𝟎)

𝟎
 

Researcher:  What do you understand by the = sign in the statement 

lim
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  =  - 3 ?   

L9:  : It means what is on the left is the same as what is on the right. 

But it is not correct because on the left they are dividing by zero 

which is not allowed. 

Researcher:  . Can you simplify the fraction   
𝒙𝟐 −𝟑𝒙

𝒙
? 

L9:  𝑥2 −3𝑥

𝑥
 = 

𝑥(𝑥−3)

𝑥
 = x -3 

Researcher:  What is your answer to lim
𝑥⟶0

𝑥 − 3 ?    

L9: lim
𝑥⟶0

𝑥 − 3 = 0 - 3 = - 3 

Researcher: In   
𝑥2−4

𝑥−2
 → 4 as  x→ 2 you explained that x is approaching 2 , 

what is happening to  
𝑥2−4

𝑥−2
 → 4   

L9: L9. When x=2, we put 2 where there is x to get 
22−4

2−2
 → 4   

Researcher:  Please explain how you arrived at the answer that you go in 1b 

(i). 

L9: Substitute the value of x into expression to get answer. 

Researcher: How many asymptotes does the graph f(x) = 
1

𝑥−1
 have? 

L9: There is no asymptote, but I am not sure 

Researcher: What are the x and y- intercepts of f(x) = 
1

𝑥−1
 

L9: For x-int, y=0 and y-int ,x=0 ; the point is (0;0) 

 

Researcher: Is f(x) defined at x =1 ? Explain     

L9: When x=1 ,we divide by zero and this is not allowed; f(x) is not 

defined. 

Researcher: How can you use your graph to find 𝑙𝑖𝑚
𝑥→1

1

𝑥−1
     and      𝑙𝑖𝑚

𝑥→∞

1

𝑥−1
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L9: If we put x=1, we divide by zero to get ∞ 

For this learner, L9, there was a conceptual error (s1), as the learner failed to grasp the 

concept of a limit where in   𝒍𝒊𝒎
𝒙→𝒂

 
𝒙𝟐 −𝟑𝒙

𝒙
 , means x-approaches and gets very close to zero but 

x≠0, which means while 𝒍𝒊𝒎
𝒙→𝒂

 𝑓(𝑥) exists f(0) is undefined. The learner, L9, found the value of 

the function at the given x-value points. L9 had the misconception that the limit of a function 

was the value of the function for a given value of x. This is incorrect since  𝒍𝒊𝒎
𝒙→𝒂

 f(x) can exist 

when f(a) is undefined. 

Learners L9 failed to resolve the problem of finding limits using the graph because his 

knowledge of graphs of hyperbolic functions was flawed, particularly in relation to how 

asymptotes are determined and the general shape of the graph. The question on the number 

of asymptotes of  f(x) = 
1

𝑥−1
  was intended to identify flaws in the learners’ knowledge of 

algebraic functions in general and hyperbolic functions specifically.  L9 drew a straight line for 

the graph of f(x) = 
1

𝑥−1
  , an indication that the learner had a very weak understanding of 

functions. This impacts negatively on his attempts to learn to understand calculus concepts.  

Learner 10’s misconceptions on the limit concept 

Figure 9. 

L10’s written answers to question 1 

 

 
Researcher: Can you explain more on the answers you gave on meaning 

of these statements? 
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 𝑙𝑖𝑚
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  =  - 3  and   

𝑥2−4

𝑥−2
 → 4  as  x→ 2  

L10: Limit means when x gets close to zero, that is approaching, 

then  
𝑥2 −3𝑥

𝑥
  gets close to -3 . 

 

Researcher: Please explain how you arrived at the answer that you go in 1b 

(i) &(ii). 

L10:  First you simplify the given expression, then you substitute the 

value of x at the end to get answer. 

Researcher: You wrote  
𝒙+𝟐

(𝒙−𝟐)(𝒙+𝟐)
 = x – 2, may you please explain why? 

L10: You cannot write 
1

𝑥−2
 because to find limit we end up dividing by 

zero which is not allowed. 

Researcher: Is it correct to write 
1

𝑥−2
= 𝑥 − 2   𝑎𝑛𝑑 

1

5
= 5 ? 

L10: 1

5
≠ 5  but if we write  

1

𝑥−2
  we cannot find limit at x =2 

Researcher: How many asymptotes does the graph f(x) = 
1

𝑥−1
 have? 

L10: Two asymptotes x=1 and y=0 

Researcher: What are the x and y- intercepts of f(x) = 
1

𝑥−1
  

L10: y-int, y=1, graph does not cross x-axis; there is no x-intercept 

Researcher: Is f(x) defined at x =1? Explain     

L10: Anything divide by zero is undefined; it means f(x) is undefined 

at x=1 

Researcher: How can you use your graph to find 𝑙𝑖𝑚
𝑥→1

1

𝑥−1
     and      𝑙𝑖𝑚

𝑥→∞

1

𝑥−1
 

L10: Graph cannot give answer, if we substitute x=1, answer is 

undefined you cannot substitute for ∞. 

L10 appeared to understand that both x and f(x) values are values which they approach 

as opposed to values which they are equal to when he explained statements on limits. 

However, when required to find the limits, the learner struggled to identify cases where the 

limit did not exist because his understanding is limited to computing the final answer by 

substitution, hence when presented with 𝑙𝑖𝑚
𝑥→∞

1

𝑥−1
 , the method of substitution failed and 
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when the substitution gave a denominator of zero as in lim 
x→1

1

𝑥−1
, the learner failed to proceed. 

This is evidence of an instrumental understanding of the limit concept.  

Secondly L10 had not mastered the concept continuity and discontinuity of functions at 

given points, he failed to find 𝐥𝐢𝐦 
𝒙→𝟐

1

𝑥−2
  because he relied on simple strategies of substitution 

and simplifying without having a deeper understanding of the concept in question.   

Learners L10 failed to resolve the problem of finding limits using the graph because his 

knowledge of graphs of hyperbolic functions was flawed, particularly in relation to how 

asymptotes are determined and the general shape of the graph. The learner drew the graph of 

f(x) = 
1

𝑥−1
  with one branch like an exponential graph, an indication that the learner could be 

confusing exponential and hyperbolic functions. Once the learner had a flawed understanding 

of the function in question, then it became impossible for the learner to utilize this incorrect 

knowledge on functions to resolve the question on limits of the same function that he did not 

understand. This prior misconception affected the learners’ ability to learn new concepts on 

limits.  

Figure 10. 

L11`s written answers to question 1 

 
 

Researcher: Can you explain more on the answers you gave on meaning of 
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these statements 

𝑙𝑖𝑚
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  = - 3 and   

𝑥2−4

𝑥−2
 → 4 as  x→ 2   

L11:  We don’t know the value of x but it is close to zero, when it 

becomes zero the answer is -3. 

L11: For  
𝑥2−4

𝑥−2
 we factorise and simplify to find value of x and from x+2, 

x= -2  

Researcher: Why did you find x ? 

L11: This statement 
𝑥2−4

𝑥−2
 → 4  as  x→ 2  is saying x = 2, but x+2=0 gives 

x= -2. 

Researcher: Please explain how you arrived at the answer that you go in 1b (i) 

&(ii). 

L11: I simplify expression then substitute the number for x at the end to 

get limit. 

Researcher: You wrote  
𝒙+𝟐

(𝒙−𝟐)(𝒙+𝟐)
 = x – 2, may you please explain why? 

L11: After dividing by  x+2 , we are left with x -2 ; it is not divided 

Researcher: Is it correct to write 
1

𝑥−2
= 𝑥 − 2   𝑎𝑛𝑑 

1

5
= 5  ? 

L11:   
1

5
≠ 5  , the first is a fraction and 5 is a whole number but if we 

replace x with 2 in 𝒍𝒊𝒎 
𝒙→𝟐

1

𝑥−2
 we get zero in denominator. We do 

not divide by zero. 

Researcher: How many asymptotes does the graph f(x) = 
1

𝑥−1
 have? 

L11: Two asymptotes x=1 and y=0 

Researcher: What are the x and y- intercepts of f(x) = 
1

𝑥−1
 ? 

L11: I did not find the intercepts 

Researcher: Is f(x) defined at x =1? Explain     

L11: f(x) is undefined at x=1, we cannot divide by zero. 

Researcher: How can you use your graph to find 𝑙𝑖𝑚
𝑥→1

1

𝑥−1
     and      𝑙𝑖𝑚

𝑥→∞

1

𝑥−1
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L11  X≠1, we can not get limit, x is between 1 and ∞ 

 

From these responses, L11 had the same misconception as L8 and L9, that the limit of a 

function is the value of the function for a given value of x. L11 did not understand the 

symbolism employed here for limits 
𝑥2−4

𝑥−2
 → 4 as x→ 2. There also appeared to be confusion 

between an algebraic expression and an equation as the learner treated an expression 
𝑥2−4

𝑥−2
 as 

an equation. This is an example of a weak foundation in algebra affecting the learning of new 

concepts on limits resulting in extrinsic calculus misconceptions. 

Secondly, L11 had not mastered the concept continuity and discontinuity of functions 

at given points, as he failed to find  𝐥𝐢𝐦 
𝒙→𝟐

1

𝑥−2
 by relying on simple strategies of substitution and 

simplifying without having a deeper understanding of the concept in question. The learner 

failed to proceed because substitution gave a denominator of zero as the function is undefined 

at x=2, but this did not imply the non-existence of the limit. 

Figure 11.  

L12`s written answers to question 1 

 
The learner, L11, failed to resolve the problem of finding limits using the graph because 

his knowledge of graphs of hyperbolic functions was flawed, particularly in relation to how 

asymptotes are determined and the general shape of the graph. L11 made the error of having 

one branch of their graph of f(x) = 
1

𝑥−1
  intersecting with an asymptote, y=0, an indication that 



      118 
 

 

Jameson et al.

RESSAT 2023, 8(4): 94-124

their understanding of an asymptote is flawed, and this prior misconception affected the 

learners’ ability to learn new concepts on limits.  

 

Researcher: Can you explain more on the answers you gave on meaning of 

these statements 

𝑙𝑖𝑚
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  = - 3  and   

𝑥2−4

𝑥−2
 → 4  as  x→2   

L12: When x takes value of zero, y takes the value of – 3 and in (ii) 

when x takes the value of 2, y takes the value of 4 

Researcher: Please explain how you arrived at the answer that you go in 1b 

(i) &(ii). 

L12: You simplify the given expression then substitute x by the given 

number to get limit. 

 

Researcher: You wrote  
𝒙+𝟐

(𝒙−𝟐)(𝒙+𝟐)
 = x – 2, may you please explain why? 

L12: Only x -2 is left after cancelling equal factors at the top and 

bottom. 

Researcher: Is it correct to write 
1

𝑥−2
= 𝑥 − 2   𝑎𝑛𝑑 

1

5
= 5    

L12: It is not correct   
1

5
≠ 5 , it means   

1

𝑥−2
≠ 𝑥 − 2   but I cannot get 

answer when I substitute x=2 in 
1

𝑥−2
. 

Researcher: You wrote 𝐥𝐢𝐦
𝒙→𝟏

𝒙𝟐−𝟏

𝒙−𝟏
   = 

(𝑥+1)(𝑥−1)

𝑥−1
 = x+1= 1+1=2, why did you 

omit 𝐥𝐢𝐦
𝒙→𝟏

  in next two steps? 

L12: I was simplifying, I used x= 1 at the end to find final answer. 

Researcher: How many asymptotes does the graph f(x) = 
1

𝑥−1
 have? 

L12: There are two asymptotes at y= -1 and y=1 

Researcher: What are the x and y- intercepts of f(x) = 
1

𝑥−1
 

L12: There is no x-intercept, y-int is y= -1 

Researcher: Is f(x) defined at x =1? Explain     
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L12: No, you cannot have zero dividing in the limit.    

Researcher: How can you use your graph to find 𝑙𝑖𝑚
𝑥→1

1

𝑥−1
     and      𝑙𝑖𝑚

𝑥→∞

1

𝑥−1
 

L12:  If x =1 , we get 
1

1−1
, have zero at the bottom and there is no 

number for ∞. 

From their responses, L12 had the same misconception as learners L8,L9 and L11, 

namely that the limit of a function is the value of the function for a given value of x , that 

𝑙𝑖𝑚
𝑥→𝑎

 𝑓(𝑥) = 𝑓(𝑎). This is a misconception because 𝑙𝑖𝑚
𝑥→𝑎

 𝑓(𝑥) can exist in cases where 𝑓(𝑎) is 

undefined as in 𝑙𝑖𝑚
𝑥→1

𝑥2−1

𝑥−1
 . 

Secondly, L12 had not mastered the concept of continuity and discontinuity of 

functions at given points, He failed to find  𝐥𝐢𝐦 
𝒙→𝟐

1

𝑥−2
 because the function is not defined at x=2. 

The method of substitution and simplifying without having a deeper understanding of the 

concept in question failed in cases where there is a discontinuity. It is because of the 

instrumental understanding of the limit concept that L12 omitted  𝒍𝒊𝒎
𝒙→𝒂

 in the procedures 

leading to the answers, as his focus was obtaining the correct answer. The omission of  𝑙𝑖𝑚
𝑥→1

 led 

to a false generalization in this statement  lim
𝒙→𝟏

𝒙𝟐−𝟏

𝒙−𝟏
   = 

(𝑥+1)(𝑥−1)

𝑥−1
 = x+1= 1+1=2 as it is not 

always true that x+1 =2 regardless of the value of x. Therefore, the correct statement should 

be  𝑙𝑖𝑚
𝑥→1

(x+1) =2. L12 did not seem to appreciate the importance of utilizing the correct 

symbolism for limits which reflects a lack of understanding of the concept of limit itself. 

L12 failed to resolve the problem of finding limits using the graph because his 

knowledge of graphs of hyperbolic functions was flawed, particularly in relation to how 

asymptotes are determined and the general shape of the graph. The learner gave two 

asymptotes parallel to the x-axis, which is an indication of a poor mastery of knowledge on 

hyperbolic functions. Once the learner’s existing knowledge of functions was flawed, it then 

created room for other related misconceptions when the learner had to build new concepts of 

limits based on a weak mathematical foundation. 

 

CONCLUSION and RECOMMENDATIONS 

The research findings here confirms that several learner conceptual errors and misconceptions 

when learning calculus concepts were a product of a weak foundation firstly in extrinsic 

calculus concepts such as functions and related subfunctions, algebraic skills such as 

substitution, multiplication, factorization, and laws of exponents. Secondly, some errors and 

misconceptions reflect learners having difficulties with intrinsic calculus concepts such as the 

limit concept and related symbolism and continuity and discontinuity of functions at given 

points.  The results also agree with researchers who argued that teaching which emphasizes 
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drill and practice leads to procedural knowledge only (Hiebert & Lefevre, 1986; Machaba, 

2018; Orton, 1983; Vinner, 1989). Procedural knowledge is instrumental and shallow, and 

there is a risk that learners with this kind of knowledge will regard the mastery of 

computational skills as the main objective of learning calculus, thereby losing the essence of 

learning mathematical concepts (Aspinwall and Miller, 1997; Bezuidenhout,2001; Davis & 

Vinner, 1986).  Effort should be made by educators to show linkages where concepts are 

related, such as in functions and calculus, to ensure that learners develop a relational 

understanding of these concepts. Related concepts are treated in isolation the net effect is 

that students tend to adopt and retain incorrect mathematical constructs (Cooley et al., 2007; 

Orton, 1983; Selden et al., 1994). As a result, there could be conceptual errors (s1), and 

generalization or transfer errors (s2), when learners are confronted with broader contexts in 

which they have to apply these concepts. 

The study showed that there are intrinsic calculus misconceptions (ci) in the learners 

written solutions and oral responses to interview questions. In these misconceptions, learners 

made systematic errors on concepts within calculus such as limits and algebraic manipulations 

and graphical application of calculus. Evidence from samples of learner solutions indicated 

that learners had only mastered an instrumental understanding of the calculus concepts that 

were taught and had no problems with executing procedures of limits but lacked conceptual 

understanding of the calculus concepts with which they were dealing. According to Skemp 

(1976, p. 20), “instrumental understanding is manifested when learners know rules and 

formulae and have the ability to use them without reason, not knowing where those rules and 

formulae come from”. This lack of conceptual knowledge or relational understanding of limits 

resulted in a wide range of systematic errors from conceptual errors (s1) to incorrect 

hypotheses being used to learn new calculus concepts (s5). Therefore, as a recommendation 

on intrinsic calculus misconceptions(ci), educators should adopt teaching methods which give 

equal attention to both the procedural and conceptual knowledge of limits of functions during 

the teaching-learning process, to ensure that learners know both what to do and why.  
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APPENDIX 

Limits Test  

(a)  Explain in words the meaning of these statements 

(i) 𝑙𝑖𝑚
𝑥 →0

 
𝑥2 −3𝑥

𝑥
  =  - 3 

(ii)  
𝑥2−4

𝑥−2
 → 4  as  x→ 2            

(b) Find the limits where they exist    

(i)   𝑙𝑖𝑚
𝑥→1

𝑥2−1

𝑥−1
       

(ii)  𝑙𝑖 𝑚
𝑥+2

𝑥2−4
𝒙→𝟐

                             

 (c) (i) Sketch the graph of f(x) = 
1

𝑥−1
   

(ii) Is f(x) defined at x =1 ? Explain 

(iii) Use the graph to find 𝑙𝑖𝑚
𝑥→1

1

𝑥−1
     and 𝑙𝑖𝑚

𝑥→∞

1

𝑥−1
       

 

 

 

 


